Electrochemical Probe Fabrication and Characterization for Single-Cell Sensing & Detection

Introduction

This study focuses on developing and characterizing electrochemical probes for intracellular analysis at micro- and nanoscale levels: Aims

- Fabrication of microscale platinum electrodes for whole cell analysis.
- Fabrication of nanoscale carbon electrodes for sub cell analysis.

Microscale Probes:

- Pt microelectrodes are fabricated for electrochemical aptamerbased sensors using heat-sealed platinum wire in borosilicate capillaries.
- Cyclic voltammetry (CV) in potassium ferricyanide verifies electrode quality and connectivity.
- Optical microscopy determines the RG value (optimal range: 5-10) to enable precise single-cell positioning.

Nanoscale Probes:

- Carbon-deposited nanopipettes are created by pulling quartz capillaries and using pyrolysis to form carbon electrodes.
- CV assesses probe performance and reproducibility.

By applying the limiting current equation i_{lim} = 4nFaDC, probe dimensions and diffusion-limited behavior can be validated, ensuring reliable electrochemical analysis.

Fabrication of Carbon Nanoelectrodes

Kayla Downarowicz, Ihuoma Uchegbu, Debashis Sen, Yusuf Muhammed, Robert A. Lazenby

b : Radius from middle of the wire to the outside wall of insulator a : Radius of the platinum wire $(12.5\mu m)$

Goal : RG value between 5 and 10

https://www.chem.fsu.edu/~lazenby/